Unbiased pattern detection in microarray data series

نویسندگان

  • Sebastian E. Ahnert
  • Karen Willbrand
  • Francis C. S. Brown
  • Thomas M. A. Fink
چکیده

MOTIVATION Following the advent of microarray technology in recent years, the challenge for biologists is to identify genes of interest from the thousands of genetic expression levels measured in each microarray experiment. In many cases the aim is to identify pattern in the data series generated by successive microarray measurements. RESULTS Here we introduce a new method of detecting pattern in microarray data series which is independent of the nature of this pattern. Our approach provides a measure of the algorithmic compressibility of each data series. A series which is significantly compressible is much more likely to result from simple underlying mechanisms than series which are incompressible. Accordingly, the gene associated with a compressible series is more likely to be biologically significant. We test our method on microarray time series of yeast cell cycle and show that it blindly selects genes exhibiting the expected cyclic behaviour as well as detecting other forms of pattern. Our results successfully predict two independent non-microarray experimental studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inferring gene-gene interactions from microarray data series using unbiased pattern detection

Motivation: In recent years microarray technology has provided biologists with an unprecedented wealth of experimental data. The analysis and interpretation of this data, usually for the purpose of identifying biologically significant genes or clusters of interacting genes, presents a highly complex challenge, and has been one of the most prominent areas of bioinformatics and systems biology. R...

متن کامل

Identification of outliers types in multivariate time series using genetic algorithm

Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...

متن کامل

A Novel Method for Detection of Epilepsy in Short and Noisy EEG Signals Using Ordinal Pattern Analysis

Introduction: In this paper, a novel complexity measure is proposed to detect dynamical changes in nonlinear systems using ordinal pattern analysis of time series data taken from the system. Epilepsy is considered as a dynamical change in nonlinear and complex brain system. The ability of the proposed measure for characterizing the normal and epileptic EEG signals when the signal is short or is...

متن کامل

Fuzzy Pattern Identification with Applications to the Microarray Data

In this paper, we investigate a relatively new area of statistical decision problem, namely features extraction and pattern detection for multiple spatial time series. We will work on the statistically motivated approach for data-based generation of interpretable rule bases on spatial (space-time) series and give some general and practical applications. The membership function of each data corr...

متن کامل

تحلیل تصاویر ریزآرایه به منظور تشخیص نوع سرطان سینه

Background: Microarray technology is a powerful tool to study and analyze the behavior of thousands of genes simultaneously. Images of microarray have an important role in the detection and treatment of diseases. The aim of this study is to provide an automatic method for the extraction and analysis of microarray images to detect cancerous diseases. Methods: The proposed system consists of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 22 12  شماره 

صفحات  -

تاریخ انتشار 2006